Year 2				
Addition				
Concept	Concrete	Pictorial		Abstract
Adding a 1-digit number to a 2-digit number not bridging a 10	$24+3=$	34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.		
Adding a 1-digit number to a 2-digit number with an exchange		Exchange 10 ones for 1 ten.		Exchange 10 ones for 1 ten.
Adding a multiple of 10 to a 2 digit number	Add the 10s and then recombine. * ****** \square 27 is 2 tens and 7 ones. 50 is 5 tens.	Add the 10s and then recombine		Add the 10 s and then recombine. $37+20=$ $30+20=50$

	There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	$\begin{aligned} & 50+7=57 \\ & 37+20=57 \end{aligned}$
Adding a multiple of 10 to a 2digit number using columns	T 0 0^{10} 0.6 0^{10} 0 10 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	T O 1 6 3 0 4 6$\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2 digit numbers (no exchange)	Add the 10 s and 1 s separately.		$17+25=$

	$5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	$\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \\ & 32+11=43 \end{aligned}$	
Adding two 2 digit numbers with an exchange			
Year 2 Subtraction			
Subtracting multiples of 10	$\triangle \otimes \not \subset \varnothing \varnothing \varnothing \varnothing \varnothing$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	100 30$10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	7 tens subtract 5 tens is 2 tens. $70-50=20$

Subtracting a single-digit number	${ }_{100}^{100}-\phi \phi \phi$		
Subtracting a single digit number using exchange			T O 2 5 $-\quad 7$ 8T 0 2 1 7 1 8
Subtracting a 2 digit number (no exchange)	T 0 98800 $0 \not \varnothing \varnothing$ 88880 $\varnothing \varnothing \varnothing \varnothing$ $\boxed{880}$ $38-16=22$	 Subtract the ones then the tens	

Grouping equally	There are 20 apples altogether. They are put in bags of 5 . How many bags are there?		
Using known times tables to solve divisions	4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	$\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the IO times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

